References | - Al-Saleem M., Al-Kathiry N., Al-Osimi S. and Badr G. “Mining Educational Data to Predict Students' Academic Performance”. Springer, 2015.
- Bousbia, N., Belamri, I: Which Contribution Does EDM Provide to Computer-Based Learning Environments?. Educational Data Mining: Applications and Trends. Springer, 2014.
- B a k e r, R., Y a c e f, K. “The State of Educational Data Mining in 2009: A Review and Future Visions”. Journal of Educational Data Mining, Vol. 1, Issue 1, pp.3-17, October 2009.
- Bayer J. Bydzovska, H., Geryk, J., Obsivac, T., Popelinsky, L. "Predicting dropout from social behavior of students". Proceedings of the 5th International Conference on Educational Data Mining, Crete, Greece, pp.103–109, 2012.
- Bin Mat, U., Buniyamin N., Arsad P. M., Kassim R., An overview of using academic analytics to predict and improve students’ achievement: A proposed proactive intelligent intervention, in: Engineering Education (ICEED), 2013 IEEE 5th Conference on, IEEE, 2013, pp. 126–130.
- Chanamarn, N., Tamee, K. "Enhancing Efficient Study Plan for Student with Machine Learning Techniques", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.3, pp.1-9, 2017.DOI: 10.5815/ijmecs.2017.03.01
- Fayyad, U. Piatetsky-Shapiro, G. and Smyth, P. “From Data Mining to Knowledge Discovery in Databases”. AI Magazine Volume 17 Number 3, 1996.
- Guruler, H. and Istanbullu, A. “Modeling Student Performance in Higher Education Using Data Mining”. A. Peña-Ayala (ed.), Educational Data Mining, Studies in Computational Intelligence 524, DOI: 10.1007/978-3-319-02738-8_4, Springer International Publishing Switzerland 2014
- Grumbach, S. Valduriez, P. "Les données en question". [Online]. Available: https://interstices.info/jcms/p_84069/les-donnees-en-question [Accessed on 2 Oct. 2017].
- Hall, M., Eibe F., Holmes, G, Reutemann, Bernhard P. and Witten, Ian H. Data mining with WEKA, update.
- Hssina, B., Merbouha, A., Ezzikouri, H. and Erritali, M. A comparative study of decision tree ID3 and C4.5. International Journal of Advanced Computer Science and Applications, 4(2), 13-19, 2014.
- Herlocker J.L., Konstan J.A., Terveen L.G., Riedl J.T. “Evaluating Collaborative Filtering Recommender Systems”, ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004, Pages 5–53.
- Ian.H. Wi t t e n, E. F r a n k, Mark A. Hall. “Data Mining: Practical Machine Learning Tools and Techniques”. 3rd edition, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA ©2011.
- Ian.H. Wi t t e n, E. F r a n k, Mark A. Hall. “Data Mining: Practical Machine Learning Tools and Techniques”. 3rd edition, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA ©2011.
- Josip Mesarić, and Dario Šebal, Decision trees for predicting the academic success of students, 2016.
- Kabakchieva D. “Predicting Student Performance by Using Data Mining Methods for Classification”. Cybernetics and Information Technologies • Volume 13, No 1, 2013.
- Larson, B., English, D., Purington, P. “Delivering Business Intelligence with Microsoft SQL Server 2012”. McGraw-Hill, New York, 2012.
- Márquez-vera, C., Cano, A., Romero, C , Noaman, A., Fardoun, Habib M.and Ventura, S. “Early dropout prediction using data mining: a case study with high school students”. Expert Systems, Vol. 33, No. 1, February 2016.
- MATLAB, “MATLAB Environment”, from http://www.mathworks.com/products/matlab/, 2016.
- Minaei-bidgoli, B., Kashy, D. A., Kortemeye,r G., Punch, W.F. “Predicting Student Performance: An Application of Data Mining Methods with the Educational Web-Based System LON-CAPA”. 33rd ASEE/ IEEE Frontiers in Education Conference, Nov. 5-8, 2003, boulder, co.
- Mueen, A. , Zafar, B., Manzoor, U. “Modeling and Predicting Students' Academic Performance Using Data Mining Techniques”. I.J. Modern Education and Computer Science, 2016, 11, pp. 36-42 Published Online November 2016 in MECS, DOI: 10.5815/ijmecs.2016.11.05
- Pena-Ayala, A. “Educational data mining: applications and trends”. 2013
- Quinlan, R. J. (1996). Improved Use of Continuous Attributes in C4.5. Journal of Arti, 4, 77-90.
- R o m e r o, C., S. V e n t u r a. Educational Data Mining: A Survey from 1995 to 2005. – Expert Systems with Applications, Vol. 33, pp.135-146, 2007.
- Romero, C., Ventura, S. Educational data mining: a review of the state of the art. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(6), pp. 601–618, 2010.
- Romero, C., & Ventura, S. “Data mining in Education,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), pp.12–27, 2013.
- Russel S., Norvig P. “Artificial Intelligence: A novel Approach”. Third edition, 2010.
- Shahiri A., Husaina W., Abdul Rashida,N.. “A Review on Predicting Student’s Performance using Data Mining Techniques”. Procedia Computer Science 72, pp. 414 – 422, 2015.
- SELF-STUDY REPORT Bachelor of Science Program in Information Technology July 2012.
- Vialardi C., Bravo J., Shafti, L., Ortigosa, A. “Recommendation in Higher Education Using Data Mining Techniques”. International Conference on Educational Data Mining (EDM) (2nd, Cordoba, Spain, Jul 1-3, 2009).
- Weka, 2017. Retrieved from http://www.cs.waikato.ac.nz/ml/weka/.
- Xie N., Liu Y. “Review of decision trees”, in: Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 5, 2010, pp. 105–109.
- Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S.Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg, 2008. "Top 10 algorithms in data mining", Knowledge and Information Systems, 14, 1: 1–37.
|
---|