References | - World Health Organisation [Internet]. 2013, Available from : http://www.who.int/diabetes/en/
- Kayaer K, Yildirim T. Medical Diagnosis on Prima Indian Diabetes Using General Regression Neural Networks. [Internet]. Available from: http://www.yildiz.edu.tr/~tulay/publications/Icann-Iconip2003-2.pdf.
- A comparative study on diabetes disease diagnosis using neural networks. Volume 36, Issue 4, May 2009, Pages 8610–8615. ELSEVIER.
- Shibendra Pobi and Lawrence O. Hall. Predicting Juvenile Diabetes from Clinical Test Results. 2006 International Joint Conference on Neural Networks, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, July 16-21, 2006.
- Pradhan M, Sahu RK. Predict the onset of diabetes disease using Artificial Neural Network (ANN). International Journal of Computer Science & Emerging Technologies. 2011; Volume 2. Issue 2.
- Shanker MS. Using Neural Networks to Predict the Onset of Diabetes Mellitus. American Chemical Society. 1996 Jan 1; 36: 35-41.
- Wu J, Diao YB, Li ML, Fang YP, Ma DC. A Semi- supervised Learning Based Method: Laplacian Support Vector Machine Used in Diabetes Disease Diagnosis. Interdiscip Sci Comput Life Sci. 2009; 1:151-155.
- Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ. Application of support vector machine modeling for prediction of common diseases: the case study of diabetes and pre- diabetes. BMC Medical Informatics and Decision Making. 2010; 10:16.
- Selvakuberan K, Kayathiri D, Harini B, Devi MI. An efficient feature selection method for classification in Health care system using machine learning Techniques. IEEE. 2011; 223-226.
- Shankaracharya, Odedra D, Mallick M, Shukla P, Samanta S, et al. Java-Based Diabetes Type 2 Prediction Tool for Better Diagnosis. Diabetes Technology & Therapeutics. 2012; 14: 251-256.
- Temurtas H, Yumusak N, Temustas F.A comparative study on diabetes disease diagnosis using neural networks.2009;36:8610-8615.
- Bellazi R, Abu-Hanna A. Data Mining Technologies for Blood Glucose and Diabetes Management. Journal of Diabetes Science and Technology.2009; 3(3): 603-612.
- Smith JW, Everhart JE, Dickson WC, Knowler WC, Johannes RS. Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus. SCAMC. 1988; 261- 265.
- Pobi S. A study of machine learning performance in the prediction of juvenile diabetes from clinical test results[Graduate Thesis].South Florida, University of South Florida;2006[cited 2013 March 21]. Available from: http://scholarcommons.usf.edu/etd/2661/.
- Davidson M, Schriger DL, Peters AL. An alternative Approach to the Diagnosis of Diabetes with a Review of the Literature. Diabetes Care. 1995; 18(7): 1065-1071.
- Cs.waikato.ac.nz. (2014). Weka 3 - data mining with open source machine learning software in java. [online] Retrieved from: http://www.cs.waikato.ac.nz/ml/weka/ [Accessed: 6 Feb 2016].
- G.H John and P. Langley, “Estimating Continuous Distributions in Bayesian Classifiers,” Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, San Francisco, 1995,pp.338-345.
- Ivanciuc, O.Support Vector Machine [internet].2005. Available from: http://www.support-vector-machines.org/SVM_review.html.
- Breiman L. Machine Learning. Editor. Robert E. Schapir. Netherlands: Kluwer Academic Publishers; 2011. P. 5-32. (Random Forests; vol 45).
- P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974.
- Mukesh kumari, Dr. Rajan Vohra and Anshul arora, “Prediction of Diabetes Using Bayesian Network” International Journal of Computer Science and Information Technologies(IJCSIT), Vol. 5 (4) , 2014, 5174-5178.
- Veena Vijayan V. and Aswathy Ravikumar, “ Study of Data Mining Algorithms for Prediction and Diagnosis of Diabetes Mellitus” International Journal of Computer Applications (0975 – 8887) Volume 95– No.17, June 2014.
- Aiswarya Iyer, S. Jeyalatha and Ronak Sumbaly, “DIAGNOSIS OF DIABETES USING CLASSIFICATION MINING TECHNIQUES” International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.1, January 2015.
|
---|